Identification of essential residues involved in the allosteric modulation of the human A(3) adenosine receptor.
نویسندگان
چکیده
We examined the effects on allosteric modulation and ligand binding of the mutation of amino acid residues of the human A(3) adenosine receptor (A(3)AR) that are hypothesized to be near one of three loci: the putative sodium binding site, the putative ligand binding site, and the DRY motif in transmembrane helical domain 3. The effects of three heterocyclic allosteric modulators [the imidazoquinoline 2-cyclopentyl-4-phenylamino-1H-imidazo[4,5-c]quinoline (DU124183), the pyridinylisoquinoline 4-methoxy-N-[7-methyl-3-(2-pyridinyl)-1-isoquinolinyl]benzamide (VUF5455), and the amiloride analog 5-(N,N-hexamethylene)-amiloride] on the dissociation of the agonist radioligand, N(6)- (4-amino-3-[(125)I]iodobenzyl)-5'-N-methylcarboxamidoadenosine, were compared at wild-type (WT) and mutant A(3)ARs. The F182A(5.43) and N274A(7.45) mutations eliminated the allosteric effects of all three modulators but had little effect on agonist binding. The N30A(1.50) and D58N(2.50) mutations abolished the allosteric effects of DU124183 and VUF5455, but not HMA, whereas the D107N(3.49) mutation abolished the effects of DU124183, but not HMA or VUF5455. The T94A(3.36), H95A(3.37), K152A(EL2), W243A(6.48), L244A(6.49), and S247A(6.52) mutations did not influence allosteric effects of the modulators. Sodium ions (100 mM), which modulate agonist binding at a variety of receptors, caused an approximately 80% inhibition of agonist binding in WT A(3)ARs but did not show any effect on D58N(2.50), D107N(3.49), and F182A(5.43) mutant receptors. In contrast, NaCl induced a modest increase of agonist binding in N30A(1.50) and N274A(7.45) mutant receptors. NaCl decreased the dissociation rate of the antagonist radioligand [(3)H]8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2.1-i]purin-5-one (PSB-11) at the WT A(3)ARs, but not the D58N(2.50) mutant receptor. The results were interpreted using a rhodopsin-based molecular model of the A(3)AR to suggest multiple binding modes of the allosteric modulators.
منابع مشابه
Role of Adenosine receptor in lung cancer
Summary: Adenosine through adenosine receptor have a crucial role in biology of lung cancer. Recent study indicated adenosine receptors have a crucial role in various aspect of lung cancer from cell growth and metastasis to modulation of apoptosis and it could be considered as a potential candidate for treatment of the lung cancer.
متن کاملSelective Inhibitory Effect of Adenosine A1 Receptor Agonists on the Proliferation of Human Tumor Cell Lines
Background: In this study, the effects of three structural analogues of adenosine upon proliferation of human tumor cells were investigated. Previous research showed a cytotoxic effect of adenosine via A3 receptor and A1 receptor and sometimes this effect was receptor independent. The researches showed a differential cytotoxic effect of adenosine and its A3 agonists on cancerous cells, while ot...
متن کاملThe role of muscarnic cholinergic receptor of the bed nucleus of stria terminalis on cardiovascular response and baroreflex modulation in rat.
Introduction: The bed nucleus of the stria terminalis (BST) is a limbic structure which is involved in cardiovascular regulation and baroreflex modulation. The presence of cholinergic synaptic terminalis with high level of muscarinic receptors in the BST has been demonstrated. This study was performed to find the role of the cholinergic muscarinic receptor in cardiovascular response and baro...
متن کاملInduction of Human Embryonic Stem Cells into neuronal differentiation by increasing cyclic Adenosine Mono Phosphate
Introduction: To evaluate the cAMP -mediated IBMX (3-IsoButyle -1-Methyl Xanthin) and db-cAMP (dibutyryl cAMP) effects on differentiation of human Embryonic Stem Cells (hESCs) into nerve cells were the objectives of this study. Methods: We have used Royan H1 hESC- derived embryoid bodies with four treatment groups: six days treatment with IBMX (5×10 -4M) and db-cAMP (10 -9M) (referred to as...
متن کاملThe Role of Nitric Oxide and Prostaglandins in the Effect of Adenosine on Contractility, Heart Rate and Coronary Blood Flow in Guinea Pig Isolated Heart
It is a well-established fact that adenosine and its receptor subtypes (A 1 and A ) are involved in changes of contractility, heart rate and coronary blood flow (CBF) under different circumstances. This study was conducted to evaluate the role of nitric oxide and prostaglandins in development of these changes. For this purpose, Nitro-L-Arginine methyl ester (L-NAME), and indomethacin as inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 63 5 شماره
صفحات -
تاریخ انتشار 2003